Acta Crystallographica Section B Structural Science

ISSN 0108-7681

Matthias Weil* and Berthold Stöger

Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria

Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at Received 14 July 2010

Accepted 11 October 2010

Crystal chemistry of transition metal diarsenates $M_2As_2O_7$ (M = Mn, Co, Ni, Zn): variants of the thortveitite structure

The structures of the 3d divalent transition-metal diarsenates $M_2As_2O_7$ (M = Mn, Co, Ni, Zn) can be considered as variants of the monoclinic (C2/m) thortveitite $[Sc_2Si_2O_7]$ structure type with $a \simeq 6.7$, $b \simeq 8.5$, $c \simeq 4.7$ Å, $\alpha \simeq 90$, $\beta \simeq 102$, $\gamma \simeq 90^{\circ}$ and Z = 2. Co₂As₂O₇ and Ni₂As₂O₇ are dimorphic. Their hightemperature (β) polymorphs adopt the thortveitite aristotype structure in C2/m, whereas their low-temperature (α) polymorphs are hettotypes and crystallize with larger unit cells in the triclinic crystal system in space groups $P\overline{1}$ and P1, respectively. Mn₂As₂O₇ undergoes no phase transition and likewise adopts the thortveitite structure type in C2/m. Zn₂As₂O₇ has an incommensurately modulated crystal structure $[C2/m(\alpha,0,\gamma)0s]$ with $\mathbf{q} = [0.3190(1), 0, 0.3717(1)]$ at ambient conditions and transforms reversibly to a commensurately modulated structure with Z = 12 (I2/c) below 273 K. The Zn phase resembles the structures and phase transitions of Cr₂P₂O₇. Besides descriptions of the lowtemperature Co₂As₂O₇, Ni₂As₂O₇ and Zn₂As₂O₇ structures as five-, three- and sixfold superstructures of the thortveititetype basic structure, the superspace approach can also be applied to descriptions of all the commensurate structures. In addition to the ternary $M_2As_2O_7$ phases, the quaternary phase (Ni,Co)₂As₂O₇ was prepared and structurally characterized. In contrast to the previously published crystal structure of the mineral petewilliamsite, which has the same idealized formula and has been described as a 15-fold superstructure of the thortveitite-type basic structure in space group C2, synthetic (Ni,Co)₂As₂O₇ can be considered as a solid solution adopting the α -Ni₂As₂O₇ structure type. Differences of the two structure models for (Ni,Co)₂As₂O₇ are discussed.

1. Introduction

Divalent metal diarsenates(V)¹ have the general formula $M_2As_2O_7$. For this family numerous phases have been structurally determined to date. The structures with M = Mg (single-crystal X-ray data: Lukaszewicz, 1963; Calvo & Neelakantan, 1970), Ca (single-crystal X-ray data: Pertlik, 1980), Cd (single-crystal X-ray data: Weil, 2001), Mn (neutron powder data: Buckley *et al.*, 1990; X-ray powder data: Aranda *et al.*, 1991) and the high-temperature polymorphs of the transition metals Co, Ni (neutron powder data: Buckley *et al.*, 1990) and Cu (X-ray powder data: Weil *et al.*, 2004*a*) adopt the monoclinic thortveitite [Sc₂Si₂O₇] (Zachariasen, 1930) aristotype with two formula units in the space group *C2/m.* A peculiarity of this structure type is a linear As-O-As bridging unit. Like several other compounds with thortveitite-type structures, Co₂As₂O₇, Ni₂As₂O₇ and Cu₂As₂O₇ are dimorphic

^{© 2010} International Union of Crystallography Printed in Singapore – all rights reserved

¹ In the older literature the synonymous term 'pyroarsenate' is much more common.

research papers

Figure 1 Photographs of the $M_2As_2O_7$ crystals obtained: (a) $Mn_2As_2O_7$; (b) $Co_2As_2O_7$; (c) $Ni_2As_2O_7$; (d) $Zn_2As_2O_7$.

to obtain high-quality single crystals makes use of chemical transport reactions (Schäfer, 1964). This method has been successfully applied for singlecrystal growth of various transition phosphates metal (Glaum, 1999; Gruehn & Glaum, 2000). By analogy, it was shown that this preparative method can likewise be used for single-crystal growth of transition metal arsenates like $Cd_2As_2O_7$ (Weil, 2001), $Cu_2As_2O_7$ (Weil *et al.*, 2004*a*,*b*) or $Fe_3^{II}Fe_4^{III}(AsO_4)_6$ (Weil, 2004).

In this article details of single-crystal growth and the thermal behaviour of the $M_2As_2O_7$ diarsenates (M = Mn, Co, Ni, Zn) are reported. The corresponding crystal structures of Mn₂As₂O₇, the low-temperature (α) polymorphs of Co₂As₂O₇,

and undergo reversible α (low-temperature) $\leftrightarrow \beta$ (hightemperature) phase transitions (Buckley *et al.*, 1990; Weil *et al.*, 2004*a,b*), whereas for the Mg, Cd and Mn diarsenates dimorphism has not been observed. For the sake of completeness it should be noted that Sr₂As₂O₇ (Weil *et al.*, 2009) is isotypic with the high-temperature polymorphs (β forms) of Ca₂P₂O₇ (Boudin *et al.*, 1993) and Sr₂V₂O₇ (Baglio & Dann, 1972), and likewise shows no polymorphism. However, this compound is not structurally related to the aforementioned metal and 3*d* transition metal diarsenates because the ionic radius of Sr²⁺ (Shannon, 1976) is too large to adopt the thortveitite structure type or a variant thereof.

Low-temperature α -Cu₂As₂O₇ (Weil *et al.*, 2004*a*) crystallizes isotypically with α -Cu₂P₂O₇ (Robertson & Calvo, 1967; Effenberger, 1990) and β -Cu₂V₂O₇ (Mercurio-Lavaud & Frit, 1973; Hughes & Brown, 1989) with four formula units in the space group C2/c. In this structure type the X_2O_7 (X = P, As, V) groups are bent. For the corresponding low-temperature α forms of the Co and Ni diarsenates triclinic unit cells were unambiguously deduced from neutron powder data, but structure refinements under consideration of a relation to the thortveitite structure by reducing the symmetry, e.g. by multiplying one or more crystal axes, were unsatisfactory for both phases (Buckley et al., 1990). Although magnetic structures for Co₂As₂O₇ and Ni₂As₂O₇ were discussed (Buckley et al., 1995), the crystal structures of the low-temperature α phases of Co₂As₂O₇ and Ni₂As₂O₇ remained unsolved until now. The same applies to Zn₂As₂O₇. To our knowledge, results of structural studies of this compound have not been published so far. This motivated us to grow single crystals of $M_2As_2O_7$ diarsenates for structure analysis. A convenient way Ni₂As₂O₇ and Zn₂As₂O₇, and of the incommensurately modulated β -Zn₂As₂O₇ polymorph are discussed with respect to their relation to the ideal thortveitite structure. For this purpose superspace models are also applied.

2. Experimental

2.1. Preparation

Single crystals of all four $M_2As_2O_7$ diarsenates were grown via chemical transport reactions (Schäfer, 1964; Gruehn & Glaum, 2000) in sealed and evacuated silica tubes with an approximate volume of 15 cm³. Starting from stoichiometric 2:1 mixtures of the component oxides MO and As_2O_5 , a temperature gradient of $1153 \rightarrow 1073$ K was applied. Chlorine gas was used as the transport agent and was provided by thermolysis of PtCl₂ (50 mg) that was also present in the reaction mixture. After a reaction period of 1 week, the onepot reaction was completed and no solids were left in the source region of the ampoule. The $M_2As_2O_7$ diarsenate crystals grew in the sink region of the ampoule and were removed from the glass wall with diluted hydrofluoric acid $(5\%_{wt})$. Mn₂As₂O₇ crystals are flesh-coloured, Co₂As₂O₇ crystals are pleochroic (purple to dark blue), Ni₂As₂O₇ crystals are orange and $Zn_2As_2O_7$ crystals are colourless (Fig. 1).

2.2. Thermal analysis

Differential scanning calorimetry (DSC) measurements of the four diarsenate phases $M_2As_2O_7$ were performed employing a NETZSCH DSC-204 Phoenix[®] system (temperature range: 233–773 K; aluminium crucible with

Table 1

Details of crystal data and structure refinements of $Mn_2As_2O_7$ and of the α - $M_2As_2O_7$ structures as described in commensurately modulated superstructures.

	Mn ₂ As ₂ O ₇	α -Co ₂ As ₂ O ₇	α -Ni ₂ As ₂ O ₇	α -Zn ₂ As ₂ O ₇
Crystal data				
Chemical formula	As ₂ Mn ₂ O ₇	As ₂ Co ₂ O ₇	As ₂ Ni ₂ O ₇	$As_2Zn_2O_7$
M _r	371.7	379.7	379.2	392.6
Crystal system, space group	Monoclinic, C2/m	Triclinic, $P\overline{1}$	Triclinic, P1	Monoclinic, I2/c
Temperature (K)	295	295	295	240
<i>a</i> , <i>b</i> , <i>c</i> (Å)	6.7454 (8), 8.7561 (10), 4.8004 (7)	32.9920 (16), 5.3332 (4), 8.9775 (6)	19.497 (4), 5.297 (1), 8.868 (2)	20.5802 (3), 8.4360 (1), 9.6180 (1)
$lpha,eta,\gamma(^\circ)$	90, 102.723 (12), 90	58.472 (1), 149.011 (1), 126.976 (1)	58.32 (2), 148.78 (2), 127.30 (2)	90, 106.5640 (7), 90
$V(Å^3)$	276.57 (6)	649.64 (9)	377.5 (3)	1600.53 (3)
Z	2	5	3	12
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	16.42	19.00	20.51	21.28
Crystal size (mm)	$0.29\times0.29\times0.14$	$0.18\times0.15\times0.02$	$0.23\times0.18\times0.08$	$0.18 \times 0.12 \times 0.02$
Data collection				
Diffractometer	Nonius CAD-4	Bruker SMART CCD	Bruker SMART CCD	Bruker APEXII CCD
Absorption correction	Numerical <i>HABITUS</i> (Herrendorf, 1997)	Numerical <i>HABITUS</i> (Herrendorf, 1997)	Numerical <i>HABITUS</i> (Herrendorf, 1997)	Multi-scan SADABS (Bruker, 2009)
T_{\min}, T_{\max}	0.061, 0.222	0.109, 0.590	0.109, 0.554	0.361, 0.749
No. of measured, independent and observed $[I > 3\sigma(I)]$ reflections	3857, 1012, 937	7549, 3866, 3229	13 779, 5394, 5331	39 828, 6626, 4899
R _{int}	0.040	0.055	0.067	0.048
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.045, 3.26	0.029, 0.034, 1.63	0.027, 0.032, 1.76	0.023, 0.032, 1.23
No. of reflections	1012	3866	5394	6626
No. of parameters	32	251	297	151
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	3.39, -3.00	1.60, -1.51	1.40, -0.71	1.01, -0.90
Flack parameter	-	_	0.02 (1)	-

Computer programs used: CAD-4 (Enraf–Nonius, 1989), SMART (Bruker, 2004), APEX2 (Bruker, 2009), SAINT (Bruker, 2004), HELENA implemented in PLATON (Spek, 2009), SHELXS (Sheldrick, 2008), JANA2006 (Petříček et al., 2006), ATOMS (Dowty, 2006).

pierced lid; N₂ atmosphere; 20 ml min⁻¹; heating/cooling rate: 10 K min⁻¹). Other than Mn₂As₂O₇, all other diarsenates $M_2As_2O_7$ are dimorphic with phase transition points of *ca* 453 (Co), 694 (Ni) and 272 K (Zn). All phase transitions show only slight hystereses (Fig. 2).

2.3. Single-crystal X-ray diffraction

Prior to X-ray data collections, the quality of selected crystals was checked under a polarizing microscope. Whereas $Mn_2As_2O_7$, $Ni_2As_2O_7$ and $Zn_2As_2O_7$ were obtained in single

DSC curves (heating and cooling) of the four $M_2As_2O_7$ (M = Mn, Co, Ni, Zn) compounds in the range 233–773 K showing reversible phase transitions for the Co, Ni and Zn phases; the Mn phase shows no phase transition.

crystalline forms, nearly all $Co_2As_2O_7$ crystals were polysynthetically twinned with а pronounced formation of parallel domains, as depicted in Fig. 1(b). A single-domain region was cut out of a large Co₂As₂O₇ crystal for subsequent X-ray data collections. For that purpose the selected crystals were mounted on thin silica glass fibres and their quality was tested on a SMART CCD threecircle diffractometer (Bruker AXS) by performing a quick data collection. The crystals with the best performance with respect to diffraction intensities, R_i values and splitting of reflections were eventually used for the final data collections. For all final data collections, performed either using

Table 2

Details of crystal data and structure refinement of incommensurately modulated β -Zn₂As₂O₇ and of the commensurately modulated α -M₂As₂O₇ structures in the superspace description.

	β -Zn ₂ As ₂ O ₇ -superspace	α-Co ₂ As ₂ O ₇ -superspace	α -Ni ₂ As ₂ O ₇ -superspace	α -Zn ₂ As ₂ O ₇ -superspace
Crystal data				
Chemical formula	$As_2O_7Zn_2$	As ₂ Co ₂ O ₇	As ₂ Ni ₂ O ₇	$As_2Zn_2O_7$
M.	392.6	379.7	379.2	392.6
Crystal system, superspace	Monoclinic, $C2/m(\alpha,0,\gamma)0s$	Triclinic, $C\overline{1}(\alpha,\beta,\gamma)$	Triclinic, $C1(\alpha,\beta,\gamma)$	Monoclinic, $C2/m(\alpha,0,\gamma)0s$
Temperature (K)	298	298	298	240
t		0	0	0
40 A	0.3190(1), 0.0.3717(1)	1/5 1/5 1/5	1/3 1/3 1/3	-1/3 0 0 5
\mathbf{q} a, b, c (Å)	6.7248 (1), 8.4605 (2), 4.7791 (1)	6.598 (1), 8.523 (1), 4.751 (1)	6.499 (1), 8.427 (3), 4.722 (5)	6.860 (1), 8.4360 (1), 4.8090 (1)
$lpha,eta,\gamma(^\circ)$	90, 105.319 (1), 90	89.30 (1), 103.359 (5), 88.771 (3)	89.19 (7), 103.28 (5), 89.46 (3)	90, 106.5640 (7), 90
$V(Å^3)$	262.216 (3)	259.85 (7)	251.7 (3)	266.756 (5)
Z	2	2	2	2
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	21.65	19.00	20.51	21.28
Crystal size (mm ³)	$0.12 \times 0.10 \times 0.05$	$0.18 \times 0.15 \times 0.02$	$0.23 \times 0.18 \times 0.08$	$0.18 \times 0.12 \times 0.02$
Data collection				
Diffractometer	Bruker APEXII CCD	Bruker SMART CCD	Bruker SMART CCD	Bruker APEXII CCD
Absorption correction	SADABS (Bruker, 2009)	HABITUS (Herrendorf, 1997)	HABITUS (Herrendorf, 1997)	SADABS (Bruker, 2009)
T_{\min}, \hat{T}_{\max}	0.212, 0,790	0.109, 0.590	0.109, 0.554	0.361, 0.749
No. of measured reflections	24 775	7549	13 779	39 828
No. of independent main reflections (all/obs)	1764/1486	779/734	1792/1780	1155/1080
No. of independent first-order reflections (all/obs.)	3256/1787	1541/1221	3602/3551	2107/1755
No. of independent second- order reflections (all/obs.)	3519/421	1546/1274	-	2311/1718
No. of independent third-	-	-	-	1053/346
order reflections (all/obs.)				
tions	$I > 3\sigma(I)$	$I > 3\sigma(I)$	$I > 3\sigma(I)$	$I > 3\sigma(I)$
R _{int}	0.042	0.055	0.067	0.048
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.029, 0.046, 0.92	0.029, 0.034, 1.63	0.027, 0.032, 1.76	0.023, 0.032, 1.24
All reflections	0.029/0.046	0.029/0.034	0.027/0.032	0.023/0.032
Main reflections	0.021/0.030	0.028/0.035	0.029/0.035	0.018/0.026
First-order reflections	0.037/0.045	0.031/0.034	0.025/0.030	0.023/0.027
Second-order reflections	0.094/0.150	0.028/0.033	_	0.030/0.033
Third-order reflections	_	_	_	0.063/0.123
No. of reflections	8539	3866	5394	6626
No. of parameters	135	251	296	149
$\Delta \rho_{\rm nax}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.22, -1.28	1.61, -1.50	1.40, -0.71	1.04, -0.94

Computer programs used: see Table 1.

the *SMART* system (Bruker AXS), a Nonius *CAD*-4 system or on an APEXII four-circle diffractometer (Bruker AXS), complete reciprocal spheres with high redundancy were measured. For low-temperature measurements, the crystals were cooled in a stream of nitrogen using an Oxford Cryosystem cooling device. Details of data collections are gathered in Tables 1 and 2.

For Co₂As₂O₇, Ni₂As₂O₇ and Mn₂As₂O₇, numerical absorption corrections were applied using the program *HABITUS* (Herrendorf, 1997). For both Zn₂As₂O₇ polymorphs a semi-empirical absorption correction based on the multi-scan approach of *SADABS* (Bruker, 2009) was carried out. Correction for extinction based on the B-C type 1 Lorentzian model (Becker & Coppens, 1974) was carried out using *JANA*2006 (Petříček *et al.*, 2006).

2.4. X-ray powder diffraction

X-ray powder diffraction measurements were performed with Cu $K\alpha_{1,2}$ radiation (1.54060, 1.54439 Å) on a PanAlytical X'Pert Pro diffractometer with Bragg–Brentano geometry equipped with an X'Celerator multi-channel detector with 2.546° scan length. For data recording, the finely ground microcrystalline material was placed on a silicon single-crystal sample holder that was spun with a frequency of eight rotations per minute. Rietveld refinements were performed with *TOPAS* (Version 4.1; Bruker, 2008).

3. Structure solutions and refinements

The unit-cell determination of $Mn_2As_2O_7$ confirmed the *C*-centred cell of the thortveitite structure type as reported in

previous powder studies (Buckley *et al.*, 1990; Aranda *et al.*, 1991). In comparison with the latter, the current refinement of $Mn_2As_2O_7$ based on single-crystal X-ray data led to more accurate results in terms of bond lengths and anisotropic displacement parameters. Since the $Mn_2As_2O_7$ structure represents the aristotype of all other structures reported in this article, we will also deal with this structure in detail.

Unit-cell determination of α -Co₂As₂O₇ showed a primitive cell with triclinic symmetry and reduced cell parameters of a = 5.3332 (4), b = 7.6789 (6), c = 16.0428 (12) Å, $\alpha = 82.916$ (1), $\beta = 88.474$ (1), $\gamma = 85.229$ (1)°, V = 649.64 (9) Å³. Structure solution with *SHELXS*97 (Sheldrick, 2008) revealed a thort-veitite-related fivefold superstructure in the space group $P\overline{1}$ with a 2.5-fold volume increase.

A 1.5-fold cell volume increase with respect to the thortveitite structure (threefold volume increase with respect to the reduced thortveitite cell) was determined for α -Ni₂As₂O₇. Here a threefold superstructure, likewise with triclinic lattice symmetry, was found with reduced lattice parameters of a =5.297 (1), b = 7.574 (2), c = 10.160 (2) Å, $\alpha = 72.87$ (3), $\beta =$ 75.75 (3), $\gamma = 85.15$ (3)°, V = 377.51 (14) Å³. Structure refinements in the centrosymmetric space group $P\bar{1}$ led to unreasonable models with rather high reliability factors. A satisfactory model was only achieved in the space group P1. An analysis of the coordinates of the actual atoms showed no apparent higher symmetry, with maximum deviations from an idealized centrosymmetric structure of up to 0.11 Å for As atoms, 0.08 Å for Ni atoms and 0.44 Å for O atoms. Moreover, the refined Flack parameter (Flack, 1983; Flack & Bernardinelli, 1999) of 0.02 (1) gives a clear indication of the absence of a centre of symmetry.

A first cell determination of several β -Zn₂As₂O₇ crystals based on room-temperature data indicated a C-centred monoclinic cell with lattice parameters close to the ideal thortveitite-type cell of Mn₂As₂O₇. However, many weak reflections could not be indexed on the basis of this cell or by increasing the cell volume; subsequent structure refinements of the C-centred thortveitite structure model remained unsatisfactory. A careful examination of the diffraction spots in reciprocal space with the program RLATT (Bruker, 2004) and of pseudo-precession photographs extracted from CCD images revealed diffraction patterns with main reflections and additional satellite reflections. All these satellite reflections could be indexed with the SAINT software (Bruker, 2009) with four integers as $\mathbf{H} = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^* + m\mathbf{q}$ with $\mathbf{q} =$ [0.3190(1), 0, 0.3717(1)] up to the order |m| = 2 (reflections with |m| = 2 already very weak). From the observed monoclinic lattice symmetry and the reflection conditions (hklm, h + k = 2n) and (h0lm, m = 2n) the superspace groups $Cm(\alpha,0,\gamma)s$ and $C2/m(\alpha,0,\gamma)0s$ were derived. Subsequent structure refinements with JANA2006 (Petříček et al., 2006) confirmed the centrosymmetric superspace group $C2/m(\alpha,0,\gamma)0s.$

Comparison of lattice parameters, superspace group and the **q** vector of β -Zn₂As₂O₇ with those of the α_2 -phase of chromium(II) diphosphate, Cr₂P₂O₇ (Palatinus *et al.*, 2006) showed an obvious relation between the two structures. For reasons of

consistency, we have taken the atomic coordinates of α_2 -Cr₂P₂O₇ as starting parameters for refinement of the final structure model of β -Zn₂As₂O₇. For the commensurate lowtemperature α -Zn₂As₂O₇ polymorph the atomic coordinates of the isotypic low-temperature phase α_1 -Cr₂P₂O₇ (Palatinus *et al.*, 2006) were taken as the starting model for structure refinement.

For the final refinements of the α - $M_2As_2O_7$ (M = Co, Ni, Zn) structures, the unit cells are described with non-standard settings (Table 1). From a practical point of view we have chosen the cells in such a way that the orientation of the structural building blocks, *viz*. alternate layers of diarsenate and metal oxide units, are arranged in a similar fashion as in the thortveitite aristotype structure. For each α - $M_2As_2O_7$ (M = Co, Ni, Zn) structure the layers extend parallel to (001). Moreover, these settings are also comparable with the unit cells of the incommensurately modulated β -Zn₂As₂O₇ structure and of the Cr₂P₂O₇ polymorphs (Palatinus *et al.*, 2006). Consequently, a close relation of all these structures is obvious.

The relations between the *C*-centred basic cell (subscript b) and the cells of the commensurate superstructures (subscript s) are given by the following relations

$$\alpha - \text{Co}_2 \text{As}_2 \text{O}_7 : (\mathbf{a}_s, \mathbf{b}_s, \mathbf{c}_s) = (\mathbf{a}_b, \mathbf{b}_b, \mathbf{c}_b) \begin{pmatrix} 5 & -1/2 & -1 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix};$$
$$\det(\mathbf{P}) = 2.5 \tag{1}$$

$$\alpha - \text{Ni}_2 \text{As}_2 \text{O}_7 : (\mathbf{a}_s, \mathbf{b}_s, \mathbf{c}_s) = (\mathbf{a}_b, \mathbf{b}_b, \mathbf{c}_b) \begin{pmatrix} 3 & -1/2 & -1 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix};$$
$$\det(\mathbf{P}) = 1.5 \tag{2}$$

$$\alpha - Zn_2 As_2 O_7 : (\mathbf{a}_s, \mathbf{b}_s, \mathbf{c}_s) = (\mathbf{a}_b, \mathbf{b}_b, \mathbf{c}_b) \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix};$$
$$\det(\mathbf{P}) = 6 \tag{3}$$

3.1. Structure refinement of incommensurately modulated $Zn_2As_2O_7$

Refinement of the basic structure of incommensurately modulated β -Zn₂As₂O₇, starting with the coordinates of the α_2 -Cr₂P₂O₇ phase, led to a reasonable model. Since the strategies for refinement of the different chromium(II) diphosphate structures were discussed in detail by Palatinus *et al.* (2006),² we will concentrate on the common features and main differences between the β -Zn₂As₂O₇ and α_2 -Cr₂P₂O₇ structures in the following.

² Another structure model based on the maximum entropy method (MEM) for the incommensurately modulated α_2 -Cr₂P₂O₇ structure has recently been published by Li *et al.* (2010). The two models are very similar and differ mainly in the treatment of the disordered P₂O₇ group.

research papers

Figure 3

 x_n - x_4 sections through the superspace electron density at the position of the O2 atom. Red lines represent the O2 atom, green lines represent O2 atoms created with the symmetry operator $(x_1, -x_2, x_3, x_4 + \frac{1}{2})$. The electron density was summed up over a range of 3 Å in the non-plotted directions. This figure is in colour in the electronic version of this paper.

After refining the atomic coordinates of the basic structure of β -Zn₂As₂O₇, positional and ADP modulation waves were carefully added for further refinement steps. The Fourier map of the O2 atom (the As-O-As bridging atom) clearly showed a discontinuity at $x_4 = 0.5$. This atom was subsequently moved from Wyckoff position 2*c* (site symmetry 2/*m*) towards

Figure 4

Projection of the thortveitite-type $Mn_2As_2O_7$ structure onto the (001) plane (*a*) and the (010) plane (*b*). MnO_6 octahedra are given in blue, AsO₄ tetrahedra are red. This figure is in colour in the electronic version of this paper.

position 4h (site symmetry 2). Its occupational modulation was described by a crenel function in the range $x_4 = [0,0.5]$. For $x_4 =$ [0.5,1] the symmetry operator $(x_1, -x_2, x_3, x_4 + \frac{1}{2})$ generates a complementary counterpart of O2. Since the x_2 coordinate of the modulation vector is zero, for every value of t either O2 or its counterpart exhibit full occupancy (Fig. 3). The displacive modulation and modulation of ADPs of O2 were modelled using a set of Legendre polynomials $P_i(x)$ of degree $i \ge 1$ with domain of definition $x \in [-1,1]$ instead of harmonic functions. The polynomials are scaled onto the nonzero part of the crenel function. Legendre polynomials of the order i = 2m ($m \in N$) are even, those of the order i = 2m + 1 ($m \in$

N) are odd. Therefore, symmetry operations which leave the crenel function unchanged impose symmetry restrictions analogous to the case of harmonic modulation functions. All Legendre polynomials are pairwise orthogonal on the domain of definition $x \in [-1,1]$, thus no special orthogonalized sets of functions have to be used to avoid correlation of parameters as in the case of harmonic modulation functions (Petříček *et al.*, 1995). Furthermore, it has been empirically shown that small sets of Legendre polynomials are well suited for the description of modulation functions in actual structures (Petříček & Dušek, 2010). The displacive modulation of the O2 atom was modelled only with Legendre polynomials up to the second degree. Thus, the positions of the O2 atom are located on parabolic segments in superspace.

The Fourier maps of the Zn atom and of O3 (terminal O atom of the AsO₄ tetrahedron) clearly displayed a sawtoothlike modulation. These atoms were also modelled with Legendre polynomials. No additional sawtooth function was introduced because the first-degree Legendre polynomial $P_1(x) = x$ already corresponds to a sawtooth function. For the O3 atom, the point of discontinuity was constrained to the same *t* position as for O2 to obtain an AsO₄ tetrahedron with reasonable bond lengths and angles for all values of *t*. The position of the point of discontinuity of the Zn atom in the β -Zn₂As₂O₇ structure is independent from the points of discontinuity of the coordinating O atoms. Nevertheless, the bond lengths and angles of the ZnO_x polyhedra are reasonable and no suspicious electron densities in the difference Fourier maps are found.

In the final refinement cycles only modulation functions with non-negligible amplitudes and a significant influence on R factors were retained. In summary, harmonic modulation functions were used for the Zn, As and O1 atoms (for each 2× displacive, 2× ADP), and Legendre polynomials were applied

Table 3	(2) is the MALO structure	
Selected interatomic distances (A) and ang	les () in the $M_2As_2O_7$ structures.	
$Mn_2As_2O_7$		

Mn-O3 ⁱ	2.1259 (18)	As-O1	1.666 (2)	As-O2-As ⁱⁱ	180
Mn-O3 ⁱⁱⁱ	2.1259 (18)	As-O3	1.6663 (18)		
Mn-O1	2.1765 (14)	As-O3 ^{iv}	1.6663 (18)		
Mn-O1 ^v	2.1765 (14)	As-O2	1.6949 (3)		
Mn-O3 ^{vi}	2.290 (2)				
Mn-O3 ^{vii}	2.290 (2)				

Symmetry codes: (i) $x - \frac{1}{2}, y + \frac{1}{2}, z - 1$; (ii) -x + 2, y, -z + 1; (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + 1$; (iv) x, -y, z; (v) -x + 1, y, -z; (vi) -x + 1, -y, -z + 1; (vii) x, -y, z - 1.

α -Co ₂ As ₂ O ₇					
Co-1-O3-5 ⁱ	2.048 (5)	Co-4-O3-2 ⁱ	1.983 (3)	As-1-O3-2 ⁱⁱ	1.614 (3)
Co-1-O3b-2 ⁱⁱⁱ	2.074 (4)	$Co-4-O1-2^{iv}$	2.087 (3)	As-1-O3b-5 ^v	1.668 (4)
Co-1-O1-5 ^{iv}	2.093 (3)	Co-4-O3b-5	2.098 (7)	As-1-O1-1	1.679 (3)
Co-1-O1-1	2.130 (2)	Co-4–O3b-4 ⁱ	2.111 (3)	As-1-O2-1	1.750 (7)
Co-1-O3-1	2.192 (7)	Co-4-O3-4	2.126 (7)	As-2-O3b-4 ^v	1.662 (3)
Co-1-O3b-2	2.196 (7)	Co-4-O1-4	2.143 (2)	As-2-O3-3 ⁱⁱ	1.667 (3)
Co-2–O3b-1 ⁱⁱⁱ	2.052 (3)	Co-5-O3-1 ⁱ	2.015 (5)	As-2-01-2	1.674 (3)
Co-2-O3b-3	2.084 (7)	Co-5-01-1 ^{iv}	2.031 (3)	As-2-O2-2	1.6868 (10)
Co-2-O1-4 ^{iv}	2.090 (3)	Co-5-01-5	2.113 (2)	As-3-01-3	1.676 (2)
Co-2-O3-4 ⁱ	2.105 (6)	Co-5–O3b-3 ⁱ	2.160 (3)	As-3-O3b-3 ^v	1.673 (3)
Co-2-O1-2	2.121 (2)	Co-5-O3b-1 ^{vi}	2.177 (7)	As-3-03-4 ⁱⁱ	1.693 (3)
Co-2-O2-1 ^{vii}	2.406 (3)	Co-5-O3-5	2.310 (7)	As-3-O2-1 ^v	1.745 (7)
Co-3–O3b-5 ⁱ	2.054 (4)			As-4-03-5 ⁱⁱ	1.666 (3)
Co-3–O3-3 ⁱ	2.072 (5)			As-4-O3b-2 ^v	1.670 (3)
Co-3-O1-3	2.093 (2)			As-4-01-4	1.682 (3)
Co-3-01-3 ^{iv}	2.142 (3)			As-4-O2-4	1.726 (9)
Co-3-O3-3	2.179 (7)			As-5-01-5	1.663 (2)
Co-3-O3b-4	2.193 (7)			As-5-O3b-1 ^v	1.674 (4)
				As-5–O3-1 ^{viii}	1.677 (3)
				$As-5-O2-4^{ix}$	1.705 (9)
				ØAs-Oterminal	1.669
				ØAs-Obridging	1.723
				As-1-O2-1-As-3 ^v	133.15 (17)
				$As-2-O2-2-As-2^{v}$	180
				As-4-02-4-As-5 ^{ix}	156.43 (16)

Symmetry codes: (i) -x + 1, -y - 1, -z; (ii) x, y, z + 1; (iii) -x, -y - 1, -z; (iv) -x + 1, -y, -z; (v) -x + 1, -y, -z; (v) x + 1, y, z; (vii) x, y - 1, z; (viii) x + 1, y, z + 1; (ix) -x + 2, -y, -z + 1.

a-Ni ₂ As ₂ O ₇					
Nia-1 $-O3c-2^{vi}$	2.021 (3)	Nib-1-O3a-1	1.967 (3)	Asa-1-O3a-3	1.658 (3)
Nia-1-O3d-1	2.051 (7)	Nib-1-O3b-1 ^{ix}	2.056 (7)	Asa-1–O3c-3 ⁱ	1.665 (3)
Nia-1-O1a-1	2.084 (2)	Nib-1-O3c-1	2.064 (7)	Asa-1-O2-1	1.694 (8)
Nia-1-O1b-1 ^v	2.105 (3)	Nib-1 $-$ O1b-1 ⁱⁱⁱ	2.087 (2)	Asa-1-O1a-1	1.695 (3)
Nia-1-O3b-1	2.131 (6)	Nib-1-O3d-3 ^{ix}	2.090 (3)	Asa-2–O3a-1 ^m	1.618 (4)
Nia-1-O2-2	2.170 (3)	Nib-1-O1a-1 ^{viii}	2.115 (3)	Asa-2-O3c-1	1.675 (4)
Nia-2-O1b-2 ^v	2.049 (3)	Nib-2-O3a-2 ^v	2.010 (5)	Asa-2–O1a-2 ⁱⁱ	1.690 (3)
Nia-2-O3c-3 ^v	2.052 (4)	Nib-2–O1a-2 ⁱⁱⁱ	2.011 (3)	Asa-2-O2-2	1.757 (6)
Nia-2-O3b-2	2.054 (5)	Nib-2-O1b-2 ^x	2.051 (2)	Asa-3-O1a-3	1.673 (2)
Nia-2-O1a-2	2.070 (2)	Nib-2-O3d-1 ^{iv}	2.116 (3)	Asa-3–O3c-2 ⁱ	1.673 (4)
Nia-2-O3a-2 ^v	2.116 (7)	Nib-2-O3b-2	2.157 (7)	Asa-3-O3a-2	1.680 (3)
Nia-2-O3d-2	2.162 (7)	Nib-2-O3c-2 ^v	2.210 (7)	Asa-3-02-3	1.690 (8)
Nia-3-O3c-1 ^v	2.026 (3)	Nib-3–O1a-3 ⁱⁱⁱ	2.020 (3)	Asb-1-O3b-2 ⁱ	1.675 (3)
Nia-3-O1a-3	2.048 (2)	Nib-3-O3a-3 ^v	2.026 (5)	Asb-1-O3d-2	1.680 (3)
Nia-3-O3b-3	2.076 (5)	Nib-3-O3d-2	2.041 (4)	Asb-1-O1b-1 ^{iv}	1.682 (3)
Nia-3-O3d-3	2.122 (7)	Nib-3-O1b-3 ^v	2.049 (2)	Asb-1-O2-3	1.726 (8)
Nia-3–O1b-3 ^{vii}	2.144 (3)	Nib-3-O3b-3	2.124 (7)	Asb-2-O1b-2	1.671 (2)
Nia-3–O3a-3 ^v	2.192 (7)	Nib-3-O3c-3 ^v	2.228 (7)	Asb-2–O3b-3 ⁱ	1.671 (3)
				Asb-2-O3d-3	1.677 (4)
				Asb-2-O2-1	1.712 (8)
				Asb-3-O3d-1 ⁱⁱⁱ	1.680(2)
				Asb-3-O1b-3	1.693 (2)
				Asb-3-O3b-1	1.709 (3)
				Asb-3-O2-2	1.779 (7)
				ØAs-O _{terminal}	1.676
				ØAs-O _{bridging}	1.726
				Asa-1-O2-1-Asb-2	152.34 (14)
				Asa-2-O2-2-Asb-3	126.10 (16)
				Asa-3-O2-3-Asb-1	157.74 (15)

for Zn (6× positional coefficients, 4× ADP) for O2 (2× positional, 2× ADP) and O3 (4× positional, 4× ADP) atoms.

Regarding the number of refinable parameters, a pair of two Legendre polynomials $P_{(2n+1)}(x)$ and $P_{(2n+2)}(x)$ corresponds to one harmonic wave. While it is well understood that the maximum harmonic generally must be less than or equal to the maximum order of satellite reflections, the situation for Legendre polynomials is not as clear and has to be carefully evaluated for each modulation function. Indeed, although only satellites up to order |m| = 2 were observed, increasing the number of Legendre polynomials used in the refinement of the displacive modulation of the Zn atom from 4 to 6 resulted in significantly better R values, in particular for the main reflections and distinctly less difference electron density in the difference Fourier maps. Further increase in the number of Legendre polynomials had negligible effect on the R values and resulted in an unreasonable shape of the modulation function close to the point of discontinuity.

3.2. Superspace models of the commensurate structures

For refinements of the commensurate α modifications of the $M_2As_2O_7$ (M = Co, Ni, Zn) structures we have alternatively used the superspace approach (van Smaalen, 1995) based on the ideal thortveitite structure of $Mn_2As_2O_7$. The usefulness of such a description for polymorphic structures with a (common) superspace model was already shown for the related structures of the various $Cr_2P_2O_7$ phases, and the low-temperature modifications of other $M_2P_2O_7$ diphosphates (Palatinus *et al.*, 2006) that all crystallize in the ideal thortveitite structure type with their high-temperature modifications.

For the three $\alpha - M_2 A s_2 O_7$ structures described here, only $\alpha - Z n_2 A s_2 O_7$ can be directly derived from the monoclinic thortveitite basic structure using the same superspace group $C2/m(\alpha, 0, \gamma)$ 0s and the **q** vector $[-\frac{1}{3}, 0, \frac{1}{2}]$. Since $\alpha - Z n_2 A s_2 O_7$ is isotypic with the low-temperature structures of α_1 - $Cr_2 P_2 O_7$ (Palatinus *et al.*, 2006) and α - $Z n_2 P_2 O_7$ (Robertson & Calvo, 1970), we have taken the atomic coordinates of the chromium phase as a starting model for refinement. The structures of α -Co₂As₂O₇ and α -Ni₂As₂O₇ belong to the triclinic crystal

Table 3 (continued)

Symmetry codes: (i) x + 1, y, z + 1; (ii) x, y, z - 1; (iii) x, y - 1, z; (iv) x, y, z + 1; (v) x, y + 1, z; (vi) x, y + 1, z - 1; (vii) x + 1, y + 1, z; (viii) x, y + 1, z + 1; (ix) x - 1, y, z; (x) x, y - 1, z + 1.

α -Zn ₂ As ₂ O ₇ (co	ommensurate s	tructure)			
Zn-1-O3-5 ⁱ	1.9405 (12)	Zn-3-03-2 ⁱⁱ	2.0406 (10)	As-1-O3-1	1.6683 (11)
$Zn-1-O3-1^{iii}$	2.0183 (10)	Zn-3-01-3	2.0683 (11)	As-1-01-1	1.6707 (10)
Zn-1-O1-1	2.0502 (11)	Zn-3-O3-4 ^{iv}	2.0897 (10)	As-1-O3-4 ^v	1.6729 (11)
Zn-1-O1-3vi	2.0655 (10)	Zn-3-O1-1vi	2.1006 (11)	As-1-O2-1	1.7146 (13)
$Zn-1-O3-4^{vii}$	2.0990 (13)	Zn-3-O3-6 ^{vii}	2.1443 (13)	As-2-O3-5 ^v	1.6429 (12)
Zn-2-O3-3 ⁱⁱ	1.9646 (12)	Zn-3-O3-1	2.1977 (13)	As-2-O3-2	1.6718 (12)
$Zn-2-O3-6^{i}$	2.0272 (11)			As-2-01-2	1.6790 (10)
$Zn-2-O1-2^{vi}$	2.0609 (11)			As-2-O2-1 ^{viii}	1.7338 (14)
$Zn-2-O3-2^{viii}$	2.0693 (13)			As-3–O3-3 ^{ix}	1.6506 (12)
Zn-2-O1-2	2.0828 (10)			As-3-O3-6	1.6731 (12)
				As-3-01-3 ^{ix}	1.6761 (10)
				As-3-O2-2	1.7354 (6)
				ØAs-O _{terminal}	1.667
				ØAs-O _{bridging}	1.728
				As-1-O2-1-As-2viii	146.94 (9)
				As-3-O2-2-As-3 ^x	140.28 (11)

Symmetry codes: (i) $x - \frac{1}{2}, -y - \frac{1}{2}, z - 1$; (ii) $-x + \frac{3}{2}, -y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}, -y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x + \frac{1}{2}, -y - \frac{1}{2}, z - 1$; (v) $x, -y, z - \frac{1}{2}$; (vi) -x + 1, -y, -z; (vii) x, y, z - 1; (viii) $-x + 1, y, -z + \frac{1}{2}$; (ix) $x, -y, z + \frac{1}{2}$; (x) $-x + 2, y, -z + \frac{3}{2}$.

	Average	Minimum	Maximum
β -Zn ₂ As ₂ O ₇ (incomm	ensurate structure)		
Zn-1-O1 ⁱ	2.079 (2)	2.033 (2)	2.1216 (19)
Zn-1-O3 ⁱⁱ	2.020 (4)	1.929 (5)	2.119 (4)
Zn-1-O3 ⁱⁱⁱ	2.361 (5)	2.126 (5)	2.800 (5)
As-O1	1.6725 (14)	1.6689 (14)	1.6768 (14)
As-O2	1.723 (2)	1.6769 (10)	1.7735 (13)
As-O3	1.661 (4)	1.636 (4)	1.687 (4)
As-O2-As ^{iv}	150.7 (2)	149.18 (16)	152.9 (3)

Symmetry codes: (i) $-x_1 + 1, x_2, -x_3, -x_4 + \frac{1}{2}$, (ii) $x_1 - \frac{1}{2}, x_2 + \frac{1}{2}, x_3, x_4$; (iii) $-x_1 + 1, -x_2, -x_3 + 1, -x_4$; (iv) $-x_1 + 2, x_2, -x_3 + 1, -x_4 + \frac{1}{2}$, (v) $-x_1 + 2, -x_2, -x_3 + 1, -x_4$.

system and hence cannot be derived from a monoclinic superspace group. These commensurate five- (Co) and threefold (Ni) superstructures were refined in superspace

Figure 5

Projection of the α -Ni₂As₂O₇ structure along [$\overline{103}$]. NiO₆ octahedra are given in blue, AsO₄ tetrahedra are red. For clarity only one layer is shown. The unit cell of the thortveitite-type basis structure is indicated with yellow lines. This figure is in colour in the electronic version of this paper.

groups $C\overline{1}(\alpha, \beta, \gamma)$ with $\mathbf{q} = \begin{bmatrix} \frac{1}{5}, \frac{1}{5}, \frac{1}{5} \end{bmatrix}$ for the Co phase and $C1(\alpha, \beta, \gamma)$ with $\mathbf{q} = \begin{bmatrix} \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \end{bmatrix}$ for the Ni phase. According to the descent in symmetry from monoclinic to triclinic, the original five atoms of the $C2/m(\alpha,0,\gamma)0s$ model, viz. one M, one As and three O atoms, are split into one Co, one As and four O atoms for the α -Co₂As₂O₇ model in $C\overline{1}$ (α , β , γ), and into two Ni, two As and six O atoms for the α -Ni₂As₂O₇ model in C1(α , β , γ). For all superspace models, the labelling of atoms was chosen so that a relation to the basic structure is obvious, e.g. an atom related to the O3 atom of the monoclinic thortveitite basic structure becomes atom O3b etc.

It should be noted that the number of independent parameters in the superspace refinement must not exceed the number of refinable parameters in the supercell description (Palatinus et al., 2006). For the final superspace refinement of the commensurate α_1 -Cr₂P₂O₇ structure, which is isotypic with α -Zn₂As₂O₇, Palatinus *et al.* (2006) eliminated insignificant modulation waves for ADP parameters of some atoms, which lowered the number of refined parameters from 115 to 105. Since our main objective was not an optimization of the refinement strategies of the superspace models, but primarily lies in an equivalent description using both supercell and superspace approaches, we have used the same or only slightly fewer refinement parameters as in the corresponding supercell models. Details

of the refinements using the superspace approach are gathered in Table 2.

Full details of all refined structures are given in the supplementary material.³

4. Discussion

The ideal thortveitite-type $Mn_2As_2O_7$ structure is the aristotype of the other arsenates α -Co₂As₂O₇, α -Ni₂As₂O₇ and α -, β -Zn₂As₂O₇. The asymmetric unit of the Mn₂As₂O₇ structure contains five atoms, namely one Mn atom, one As atom and three O atoms. For the description of the thortveitite [Sc₂Si₂O₇] structure (Zachariasen, 1930) and most of its isotypic $M_2X_2O_7$ congeners the coordinates of the bridging O atom of the X_2O_7 group were chosen to coincide with the origin (Wyckoff position 2*a* with site symmetry 2/*m*). The *M* atom is on position 4*h* (2), the *X* atom on 4*i* (*m*), and the two remaining O atoms are on positions 4*i* (2) and 8*j* (1), respec-

³ Supplementary data for this paper are available from the IUCr electronic archives (Reference: SN5100). Services for accessing these data are described at the back of the journal.

Figure 6

Projection of the α -Co₂As₂O₇ structure along $[\overline{105}]$. CoO₆ octahedra are given in blue, AsO₄ tetrahedra are red. For clarity only one layer is shown. The unit cell of the thortveitite-type basis structure is indicated with yellow lines. This figure is in colour in the electronic version of this paper.

Figure 7

Projection of the incommensurate β -Zn₂As₂O₇ structure onto the (001) plane. Only one layer is shown. ZnO_x octahedra are given in blue, AsO₄ tetrahedra are red. The unit cell of the thortveitite-type basis structure is indicated with yellow lines. This figure is in colour in the electronic version of this paper.

tively. For the present refinement of the diarsenate phases, an origin shift along c/2 was applied with respect to the original thortveitite cell. This setting is consistent with the description chosen by Palatinus *et al.* (2006), where the *M* atom and the bridging O atom are situated on positions 4g and 2c, respectively.

The main structural features of the $Mn_2As_2O_7$ aristotype structure are distorted MnO_6 octahedra and As_2O_7 groups with a staggered conformation consisting of two cornersharing AsO_4 tetrahedra. The MnO_6 octahedra share edges and form two-dimensionally infinite honeycomb sheets extending parallel to (001). The As_2O_7 groups are situated below and above the vacant sites of the cationic layers (Fig. 4). They exhibit a linear As-O-As bridging angle⁴ and a large displacement parameter of the bridging O atom perpendicular to the As-O-As axis is observed. In agreement with other X_2O_7 groups consisting of condensed corner-sharing tetrahedral XO_4 units, the X-O bond lengths of the bridging O atoms are considerably longer than those of the terminal O atoms (Table 3).

In the different $M_2As_2O_7$ structures (M = Co, Ni, Zn) the thortveitite-type basis structure is clearly discernible, but a distinct trend with regard to a change of the coordination numbers of the metal ions from 6 to 5 is obvious. In the ideal

thortveitite structure of Mn₂As₂O₇ the coordination number of the unique Mn²⁺ ion is 6, with Mn–O bond lengths ranging from 2.1259 (18) to 2.290 (2) Å. Coordination numbers of 6 are also realised for all six crystallographically different Ni²⁺ ions in the α -Ni₂As₂O₇ structure (Fig. 5), with a spread of the Ni–O bond lengths from 1.967 (3) to 2.228 (7) Å, accompanied by a distorted octahedral coordination. Three of the five independent Co²⁺ ions in α -Co₂As₂O₇ are likewise octahedrally coordinated [1.983 (3)–2.193 (2) Å], whereas the

Selected distance and angles range in the incommensurate β -Zn₂As₂O₇ structure. (a) Zn–O distances, (b) As–O distances, (c) As–O–As angles.

⁴ For the ideal $M_2X_2O_7$ thortveitite structure, a so-called 'split-atom' model was alternatively discussed for the example of Mn₂P₂O₇ (Stefanidis & Nord, 1984). In this model the equally disordered bridging O atom is shifted from the centre of symmetry towards a twofold axis (Wyckoff position 4g), resulting in a bent X-O-X angle.

remaining two Co²⁺ ions (Co2 and Co5) have one significantly longer Co-O bond > 2.3 Å and hence may be described as [5 + 1]-coordinate (Fig. 6). As can be seen from Figs. 7 and 8, in the incommensurate β -Zn₂As₂O₇ structure the Zn²⁺ ion shows a distinct modulation of its coordination number between 5 and 6. Finally, for the commensurate α -Zn₂As₂O₇ structure, two (Zn1 and Zn2) of the three Zn^{2+} ions are clearly five-coordinate [1.9405 (12)-2.0990 (13) Å], with the nextnearest O atom at distances > 3.19 Å, leading to a distorted coordination intermediate between a square pyramid and a trigonal bipyramid. The third Zn²⁺ ion again exhibits coordination number 6 with a distorted octahedral environment and bond-length distribution between 2.0406 (10) and а 2.1977 (13) Å (Fig. 9). An overview with respect to the relations between the individual $M_2As_2O_7$ structures is given in Fig. 10.

Another characteristic distinction between the Mn₂As₂O₇ aristotype and the low-temperature α -M₂As₂O₇ (M = Co, Ni, Zn) polymorphs pertains to a change from a linear to a bent As-O-As bridging angle. A linear bridging unit is observed only for one As₂O₇ group (As-2) in α -Co₂As₂O₇ with the corresponding O2-2 bridging atom likewise located on an inversion centre, whereas the bridging angles of the other two As₂O₇ groups are bent with 133 and 156°. In analogy with the aristotype structure, the bridging O2-2 atom exhibits a high displacement parameter perpendicular to the As-O-As axis. In α -Ni₂As₂O₇ and α -Zn₂As₂O₇ all As-O-As bridging units clearly deviate from linearity with As-O-As angles of 152, 126, 158° and 147, 140°, respectively. With only a slight modulation between 149 and 153° the preference for the bent As₂O₇ groups can also be seen in the incommensurate β - $Zn_2As_2O_7$ structure (Fig. 8). Irrespective of the linear or bent character of the diarsenate anion in the various $M_2As_2O_7$ (M = Co, Mn, Ni, Zn) structures, the averaged values of the As-Obridging bond lengths are always greater than the corresponding values of the $As-O_{terminal}$ bond lengths, a factor that

Figure 9

Projection of the commensurate α -Zn₂As₂O₇ structure onto (001). ZnO_x octahedra are given in blue, AsO₄ tetrahedra are red. The unit cell of the thortveitite-type basis structure is indicated with (partial) yellow lines. This figure is in colour in the electronic version of this paper.

is observed for most X_2O_7 groups consisting of condensed XO_4 tetrahedra. Selected bond lengths and angles are given in Table 3. The average bond lengths of the AsO₄ groups of 1.669 Å for Mn₂As₂O₇, of 1.683 Å for α -Co₂As₂O₇, of 1.689 Å for α -Ni₂As₂O₇, of 1.682 Å for α -Zn₂As₂O₇ and of 1.679 Å for β -Zn₂As₂O₇ show only a marginal variation and are in very good agreement with the value of 1.686 Å calculated for more than 700 AsO₄ tetrahedra in various inorganic arsenates(V) (Schwendtner, 2008).

4.1. Origin of the modulation and comparison with a_2 -Cr₂P₂O₇

Besides α_2 -Cr₂P₂O₇, β -Zn₂As₂O₇ is the only phase within the $M_2X_2O_7$ family of compounds exhibiting an incommensurately modulated structure. The basic structures of α_2 - $Cr_2P_2O_7$ and β -Zn₂As₂O₇ can be considered as configurational homeotypic (Bergerhoff et al., 1999). Although they have the same superspace group symmetry and exhibit similar coordinations of the constituents, they differ in the Wyckoff sequence and show clear differences with respect to their modulations. Whereas the diffraction pattern of the Zn phase has discernible satellites only up to the order |m| = 2, satellite reflections up to the order |m| = 4 were observed for the Cr phase. Moreover, the modulation vector \mathbf{q} is distinctly different for the two structures, viz. $\mathbf{q} = [0.3190(1), 0,$ 0.3717 (1)] for β -Zn₂As₂O₇ versus **q** = [-0.361, 0, 0.471] for α_2 - $Cr_2P_2O_7$. The modulation functions of the As atom in β - $Zn_2As_2O_7$ (site symmetry *m*) exhibit no point of discontinuity, in contrast to the P atom in α_2 -Cr₂P₂O₇ for which crenel functions and a disorder model were introduced for this atom

Figure 10

Relationships between the $M_2As_2O_7$ structures, including the $Cr_2P_2O_7$ structures.

and the entire P₂O₇ group. Another main difference between the chromium and the zinc phase pertains to the X-O-X(X)= As, P) bridging angles and the corresponding X-O2distances (neglecting the disorder in the α_2 -Cr₂P₂O₇ structure). Whereas the P-O2-P angles show a modulation between 146 (4) and $155(3)^{\circ}$ with more or less constant P-O2 bond lengths [minimum 1.60 (6) Å, maximum 1.61 (5) Å; Palatinus et al., 2006], the situation in the zinc phase is reversed. Here the As-O2-As angles are only slightly modulated around 150° [min. 149.18 (16)°; max. 152.9 (3)°], but the As-O2 bond lengths vary markedly between 1.6784 (10) and 1.7745 (13) Å (Table 3; Fig. 8). In comparison with phosphorus, the arsenic atom seems to be able to form considerably longer X-O bonds than expected from the mean values for tetrahedral XO_4 groups. Such longer X-Obonds are known from octahedrally coordinated arsenic in various oxoarsenates(V) with a mean value of 1.827 Å for 40 individual bond lengths within a AsO₆ group (Schwendtner, 2008), but apparently could not be realised in oxophosphates(V) which are known to contain solely tetrahedrally coordinated phosphorus atoms. A concise graphical representation of the modulation of the As₂O₇ group is depicted in Fig. 11.

Figure 11

Graphical representation of the modulation of the As₂O₇ group of the β -Zn₂As₂O₇ structure using 25 equidistant *t* sections in the range t = [0,1], (*a*) viewed down [010] and (*b*) projected on (001). [Symmetry codes: (i) $-x_1 + 2, -x_2, -x_3 + 1, -x_4$; (ii) $x_1, -x_2, x_3, -x_4 + \frac{1}{2}$; (iii) $-x_1 + 2, x_2, -x_3 + 1, -x_4 + \frac{1}{2}$]

Palatinus et al. (2006) have associated the incommensurability of the α_2 -Cr₂P₂O₇ structure, which occurs as an intermediate between the low-temperature α_1 -Cr₂P₂O₇ polymorph (285 K, α -Zn₂P₂O₇ structure type) and the high-temperature β -Cr₂P₂O₇ polymorph (345 K, thortveitite structure type), with the presence of low-symmetrical (bent) diphosphate groups in a rather high symmetry CrO₆ environment of the high-temperature phase, leading to a distortion of the α_2 -Cr₂P₂O₇ structure. Another distortion, caused by the Jahn-Teller activity of Cr^{2+} with its d^4 electronic configuration, was discussed as an equally important factor. Zn²⁺, on the other hand, has a d^{10} configuration which rules out any Jahn–Teller driven distortion of the ZnO_x polyhedra in α -Zn₂As₂O₇. However, what is common for both the intermediate α_2 - $Cr_2P_2O_7$ and the high-temperature β -Zn₂P₂O₇ structure is the preference for coordination number 5 of some of the metal cations. Such behaviour makes them unique amongst other $M_2X_2O_7$ structures (M = Mg, 3d transition metals; X = P, As) where coordination number 5 is observed only for the lowtemperature polymorphs α -Cu₂P₂O₇ (Robertson & Calvo, 1967) and α -Zn₂P₂O₇ (Robertson & Calvo, 1970), but never for the corresponding high-temperature polymorphs which all show coordination number 6 for the M^{2+} cations.

In summary, the interplay between the individual coordination sequences of the metal atoms within the metal oxide layers and the peculiar geometric features of the X_2O_7 groups appears to be the primary cause for the incommensurability of the α_2 -Cr₂P₂O₇ and α -Zn₂As₂O₇ structures, but also seems to be responsible for the differences of the two structures.

4.2. A note on the crystal structure of petewilliamsite $[(Ni,Co)_2As_2O_7]$

In connection with the $M_2As_2O_7$ structures of 3*d* transition metals discussed in this article, the crystal structure of the mineral petewilliamsite must certainly be mentioned. Petewilliamsite has the idealized formula $(Ni,Co)_2(As_2O_7)$ and is the only pyroarsenate mineral characterized so far (Roberts *et al.*, 2004). As expected, the mineral possesses a thortveititetype structure and its crystal structure was solved and refined in the space group C2, with Z = 30 and lattice parameters of *a* = 33.256 (5), *b* = 8.482 (1), *c* = 14.191 (2) Å and β = 104.145 (3)°. The relation between the C-centred thortveititetype basic cell (subscript b) and the supercell (subscript s) is given by the relation

(Ni, Co)₂As₂O₇: (**a**_s, **b**_s, **c**_s) = (**a**_b, **b**_b, **c**_b)
$$\begin{pmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
;
det(**P**) = 15. (4)

For the final structure model of petewilliamsite it was not possible to refine anisotropic displacement parameters for the mixed-occupied metal cation sites and the As atoms, or isotropic displacement parameters for the O atoms (Roberts *et al.*, 2004). Moreover, some of the AsO₄ tetrahedra exhibit unrealistic bond lengths, either by being far too short (1.46 Å) or too long (2.02 Å) for tetrahedrally coordinated As. The reasons for such discrepancies in the structure model can be caused by a poorly diffracting crystal and/or weak superstructure reflections, consequently resulting in a low data-toparameter-ratio, or may originate from unrecognized twinning. To shed light on the problems of the unsatisfactory petewilliamsite structure model, we have prepared polycrystalline material with nominal composition (Ni,Co)₂As₂O₇ by heating stoichiometric amounts of CoO, NiO and As₂O₅ in sealed silica tubes, followed by single-crystal growth using chemical transport reactions, as described in detail in §2. X-ray powder diffraction data (d values and intensities) of the obtained dark-red crystals are in good agreement with the data provided by Roberts et al. (2004) for the natural material. However, all grown crystals under investigation were nonmerohedrally twinned by mirroring at (010). In each case, separation of the individual diffraction spots revealed triclinic cells very similar to that of α -Ni₂As₂O₇ with lattice parameters of $a \simeq 19.65$, $b \simeq 5.32$, $c \simeq 8.93$ Å, $\alpha \simeq 58.4$, $\beta \simeq 148.9$, $\gamma \simeq$ 127.2° , $V \simeq 384 \text{ Å}^3$, which suggests that (Ni,Co)₂As₂O₇ is part of a solid solution series $(Ni_{1-x}Co_x)_2As_2O_7$ with $x \simeq 0.5$ based on α -Ni₂As₂O₇ as the parent ternary phase. The slight increase of the cell volume by $\sim 2\%$ conforms to an incorporation of the larger Co^{2+} into the structure of α -Ni₂As₂O₇ (ionic radius of high-spin Co²⁺ is 0.74 Å versus 0.69 Å for Ni²⁺; Shannon, 1976). A satisfactory refinement of the (Ni,Co)₂As₂O₇ 'singlecrystal' data based on the α -Ni₂As₂O₇ structure model was hampered by problems with separating the individual diffraction contributions of the respective twin domains during integration of the single-crystal intensity data. However, inspection of measured and simulated X-ray powder patterns assuming a mixed Co/Ni occupancy (ratio 1:1 for each metal site) showed satisfactory agreement, giving evidence that synthetic (Ni,Co)₂As₂O₇ adopts the α -Ni₂As₂O₇ structure type. Nevertheless, it cannot be excluded that the minor amount of Cu²⁺ present in natural petewilliamsite (about 8 mol%) is responsible for the formation of a 15-fold superstructure, as suggested by Roberts et al. (2004). Additional (powder and single-crystal) X-ray diffraction studies for a more reliable determination of the petewilliamsite structure with natural samples are currently in progress.

We would like to express our gratitude to Michal Dušek (Prague) for assistance with the refinement procedure of the incommensurately modulated structure of β -Zn₂As₂O₇. He, together with Vaclav Petříček (Prague) and Erich Zobetz (Vienna), also provided valuable comments on the manuscript. Uwe Kolitsch (Vienna) is acknowledged for additional X-ray data collections of single crystals on a Nonius Kappa-CCD diffractometer and Ekkehard Füglein (Netzsch GmbH) for some of the DSC measurements. BS thanks the Österreichische Forschungsgemeinschaft (ÖFG) for a MOEL stipend and the Czech Academy of Science for a 3-month stay in Prague.

References

- Aranda, M. A. G., Bruque, S. & Attfield, J. P. (1991). *Inorg. Chem.* **30**, 2043–2047.
- Baglio, J. A. & Dann, J. N. (1972). J. Solid State Chem. 4, 87-93.
- Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.
- Bergerhoff, G., Berndt, M., Brandenburg, K. & Degen, T. (1999). *Acta Cryst.* B**55**, 147–156.
- Boudin, S., Grandin, A., Borel, M. M., Leclaire, A. & Raveau, B. (1993). Acta Cryst. C49, 2062–2064.
- Bruker (2004). SMART, RLATT and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2008). TOPAS4. Bruker AXS GmbH, Karlsruhe, Germany.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Buckley, A. M., Bramwell, S. T. & Day, P. (1990). *J. Solid State Chem.* **86**, 1–15.
- Buckley, A. M., Bramwell, S. T., Day, P. & Visser, D. (1995). J. Solid State Chem. 115, 229–235.
- Calvo, C. & Neelakantan, K. (1970). Can. J. Chem. 48, 890-894.
- Dowty, E. (2006). *ATOMS*, Version 6.3.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Effenberger, H. (1990). Acta Cryst. C46, 691-692.
- Enraf-Nonius (1989). *CAD*4. Enraf-Nonius, Delft, The Netherlands. Flack, H. D. (1983). *Acta Cryst.* A**39**, 876–881.
- Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915.
- Glaum, R. (1999). Thesis of Habilitation (in German). University of Gießen, Germany; http://bibd.uni-giessen.de/ghtm/1999/uni/
- h990001.htm. Gruehn, R. & Glaum, R. (2000). Angew. Chem. Int. Ed. **39**, 692– 716.
- Herrendorf, W. (1997). HABITUS. University of Gießen, Germany.
- Hughes, M. & Brown, M. A. (1989). Neues Jahrb. Miner. Monatsh. pp. 41–47.
- Li, L., Schönleber, A. & van Smaalen, S. (2010). Acta Cryst. B66, 130– 140.
- Lukaszewicz, K. (1963). Bull. Acad. Pol. Sci. Chim. 11, 361-364.
- Mercurio-Lavaud, D. & Frit, B. (1973). C. R. Acad. Sci. C, 277, 1101– 1104.
- Palatinus, L., Dušek, M., Glaum, R. & El Bali, B. (2006). Acta Cryst. B62, 556–566.
- Pertlik, F. (1980). Monatsh. Chem. 111, 399-405.
- Petříček, V. & Dušek, M. (2010). Personal communication.
- Petříček, V., Dušek, M. & Palatinus, L. (2006). *JANA*2006. Institute of Physics, Praha, Czech Republic.
- Petříček, V., van der Lee, A. & Evain, M. (1995). Acta Cryst. A**51**, 529–535.
- Roberts, A. C., Burns, P. C., Gault, R. A., Criddle, A. J. & Feinglos, M. N. (2004). *Mineral. Mag.* 68, 231–240.
- Robertson, B. E. & Calvo, C. (1967). Acta Cryst. 22, 665-672.
- Robertson, B. E. & Calvo, C. (1970). J. Solid State Chem. 1, 120–133.
- Schäfer, H. (1964). *Chemical Transport Reactions*. New York: Academic Press.
- Schwendtner, K. (2008). PhD thesis. University of Vienna, Austria.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stefanidis, T. & Nord, A. G. (1984). Acta Cryst. C40, 1995–1999.
- van Smaalen, S. (1995). Crystallogr. Rev. 4, 79-202.
- Weil, M. (2001). Acta Cryst. E57, i28-i29.
- Weil, M. (2004). Acta Cryst. E60, i139-i141.
- Weil, M., Dorević, T., Lengauer, C. L. & Kolitsch, U. (2009). Solid State Sci. 11, 2111–2117.
- Weil, M., Lengauer, C. L., Füglein, E. & Baran, E. J. (2004a). Cryst. Growth Des. 4, 1229–1235.
- Weil, M., Lengauer, C., Füglein, E. & Baran, E. J. (2004b). Z. Anorg. Allg. Chem. 630, 1768.
- Zachariasen, W. H. (1930). Z. Kristallogr. 73, 1-6.